Sains Malaysiana 53(12)(2024): 3859-3870
http://doi.org/10.17576/jsm-2024-5312-02
Isolation and
Antibacterial Screening of Marine Heterotrophic Bacteria from Makassar Strait,
Indonesia
(Pengasingan dan Pemeriksaan Antibakteria Bakteria Heterotrofik Marin dari Selat Makassar, Indonesia)
CHARLIE
ESTER DE FRETES1,2,*,
ROSMI NUSLAH PESILETTE1, MARIO ROWAN SOHILAIT3, DORTHEA
YANUBI4, FLORENSIA CLAUDYA THALIA RIRIHATUELA4 &
DHIRA SATWIKA4
1Research Center for Deep Sea, National Research and Innovation Agency, 97233 Ambon, Indonesia
2Center for Collaborative Research on Aquatic Ecosystem in Eastern
Indonesia, 97233 Ambon, Indonesia
3Departement of Chemistry, Pattimura University, 97233 Ambon, Indonesia
4Departement of Biotechnology, Duta Wacana Christian University, 55224 Yogyakarta, Indonesia
Received: 18
April 2024/Accepted: 23 October 2024
Abstract
The biological potential of
microorganisms in Indonesian waters has yet to be widely reported despite their
high diversity. This research aimed to isolate bacteria from seawater and
seabed sediments in Makassar Strait and then screen their potential
antibacterial abilities. Subsequently, we tried to determine the bioactive
compound content of the bacterial extracts. We purified 15 bacterial isolates
and based on a 16S rRNA analysis, we found that these bacteria represented
three phyla, namely Actinobacteria, Firmicutes, and Proteobacteria. All the
isolates were found to have antibacterial capabilities, while 2 isolates showed
positive results for inhibiting the growth of the pathogens tested. Molecular
analysis studies provided information that the two isolates which were Bacillus sp., namely B. stratosphericus TR4 and B. thuringiensis TR13, were detected to have non-ribosomal
peptide synthetase (NRPS) genes, which are thought to contribute to their
antibacterial potential. Compounds from the imidazole group, quinolone ester
derivatives, steroid derivatives, and acetamide derivatives were found in the
extracts of both strains. Further research needs to be conducted to better
understand each compound’s antibacterial mechanisms and possible interesting
bioactive properties.
Keywords:
Antibacterial; LC-MS; marine bacteria; NRPS
Abstrak
Potensi biologi mikroorganisma di perairan Indonesia masih belum dilaporkan secara meluas walaupun mempunyai kepelbagaian yang tinggi. Penyelidikan ini bertujuan untuk memencilkan bakteria daripada air laut dan sedimen dasar laut di Selat Makassar seterusnya menyaring potensi antibakteria bakteria tersebut. Selepas itu, kami cuba menentukan kandungan sebatian bioaktif ekstrak bakteria. Kami telah memencilkan 15 pencilan bakteria dan berdasarkan analisis rRNA 16S,
kami mendapati bahawa bakteria ini mewakili tiga filum, iaitu Actinobacteria, Firmicutes dan Proteobacteria. Kesemua pencilan didapati mempunyai keupayaan antibakteria, manakala 2 pencilan menunjukkan keputusan positif untuk menghalang pertumbuhan patogen yang diuji. Kajian analisis molekul memberikan maklumat bahawa 2 pencilan iaitu Bacillus sp., B. stratosphericus TR4 dan B.
thuringiensis TR13 dikesan mempunyai gen bukan ribosomal peptida sintetase (NRPS) yang dianggap menyumbang kepada potensi antibakteria. Sebatian daripada kumpulan imidazol, sebatian ester kuinolon, sebatian steroid dan sebatian asetamida ditemui dalam ekstrak kedua-dua strain. Kajian lanjut perlu dijalankan untuk lebih memahami mekanisme antibakteria setiap sebatian dan kemungkinan sifat bioaktif yang menarik.
Kata kunci: Antibakteria; bakteria marin; LC-MS; NRPS
REFERENCES
Abriouel, H., Franz, C.M.,
Omar, N.B. & Gálvez, A. 2011. Diversity and
applications of Bacillus bacteriocins. FEMS Microbiology Reviews 35(1): 201-232.
Ayuso-Sacido, A. & Genilloud, O. 2005. New PCR primers for the screening of
NRPS and PKS-I systems in actinomycetes: Detection and distribution of these byosynthetic gene sequences in major taxonomic groups. Microbial
Ecology 49: 10-24.
Baharudin, M.M.A., Ngalimat, M.S., Shariff, F.M., Yusof, Z.N.B., Baharum, S.N. & Sabri, S. 2021. Antimicrobial
activities of Bacillus velezensis stains
isolated from stingless bee products against methicillin-resistant Staphylococcus
aureus. PLoS ONE 16(5): e0251514.
Bull, A.T., Ward, A.C. & Goodfellow, M. 2000.
Search and discovery strategies for biotechnology: The paradigm shift. Microbiology
and Molecular Biology Reviews 64: 573-606.
Carroll, A.R., Copp, B.R.,
Davis, R.A., Keyzers, R.A. & Prinsep,
M.R. 2021. Marine natural products. Natural Product Reports 38: 362-413.
Chen, L., Zhao, B., Fan, Z.J., Liu, X.M., Wu, Q.F.,
Li, H.P. & Wang, H.X. 2018. Synthesis of novel 3,4-Chloroisothiazole-based imidazoles as fungicides and evaluation of their mode of
action. Journal of Agricultural and Food Chemistry 66: 7319-7327.
Chi, L., Yang, S.Q., Li, X.M., Li, X.D., Wang, B.G.
& Li, X. 2021. A new steroid with 7β,8β-epoxidation from the deep
sea-derived fungus Aspergillus penicillioides SD-311. Journal of Asian Natural Products Research 23: 884-891.
de Fretes, C.E., Widianto, D., Purwestri, Y.A.
& Nuringtyas, T.R. 2021. Plant growth-promoting
activity of endophytic bacteria from sweet sorghum (Sorghum bicolor (L.) Moench). Indonesian
Journal of Biotechnology 26(4): 190-196.
Donia, M. & Hamann,
M.T. 2003. Marine natural products and their potential applications as
anti-infective agents. The Lancet Infectious Diseases 3: 338-348.
Duan, Y.T., Wang, Z.C.,
Sang, Y.L., Tao, X.X. & Zhu, H.L. 2013. Exploration of structure-based on
imidazole core as antibacterial agents. Current Topics in Medicinal
Chemistry 13: 3118-3130.
Engel, S., Jensen, P.R. & Fenical,
W. 2002. Chemical ecology of marine microbial defense. Journal of Chemical Ecology 28: 1971-1985.
Gulder, T.A.M. & Moore,
B.S. 2010. Chasing the treasures of the sea-bacterial marine natural products. Curr. Opin. Microbiol. 12: 252-260.
Lei, J. & Zhou, J. 2002. A marine natural product
database. Journal of Chemical Information and Computer Sciences 42(3):
742-748.
Hancock, R.E.W. 2007. The end of an era? Nature
Reviews Drug Discovery 6: 28.
He, X., Chen, X., Peng, G., Guan, S., Lei, L., Yao,
J., Liu, B. & Zhang, C. 2014. Pelopuradazole, a
new imidazole derivative alkaloid from the marine bacteria Pelomonas puraquae sp. nov. Natural
Product Research 28: 680-682.
Hettiarachchi, S.A., Lee, S., Youngdeuk, L., Kwon, Y., De Zoysa,
M., Moon, S., Jo, E., Kim, T., Kang, D., Heo, S.
& Oh, C. 2017. A rapid and efficient screening method for antibacterial
compound-producing bacteria. Journal of Microbiology and Biotechnology 27(8): 1441-1448.
Jiang, J., Pan, Y., Hu, S., Zhang, X., Hu, B., Huang,
H., Hong, S., Meng, J., Li, C. & Wang, K. 2014. Halomonas songnenensis sp. nov.,
a moderately halophilic bacterium isolated from saline and alkaline soils. Journal
of Systematic and Evolutionary Microbiology 64: 1662-1669.
Lam, K.S. 2006. Discovery of novel metabolites from
marine actinomycetes. Current Opinion in Microbiology 9: 245-251.
Li, W.J., Li, Q., Liu, D. & Ding, M.W. 2013.
Synthesis, fungicidal activity, and sterol 14α-Demethylase binding
interaction of 2-Azolyl-3,4-dihydroquinazolines on Penicillium digitatum. Journal of Agricultural and Food
Chemistry 61: 1419-1426.
Manivasagan, P., Venkatesan, J.,
Sivakumar, K. & Kim, S.K. 2013. Marine actinobacterial metabolites: Current
status and future perspectives. Microbiological Research 168: 311-332.
Ntougias, S. & Russell,
N.J. 2000. Bacillus sp. WW3-SN6, a novel facultatively
alkaliphilic bacterium isolated from the washwaters of edible olives. Extremophiles 4: 201-208.
Park, E.J., Kim, M.S., Roh,
S.W., Jung, M.J. & Bae, J.W. 2010. Kocuria atrinae sp. nov.,
isolated from traditional Korean fermented seafood. International Journal of
Systematic and Evolutionary Microbiology 60(4): 914-918.
Piel, J. 2009.
Metabolites from symbiotic bacteria. Natural Product Reports 26:
338-362.
Piel, J. 2002. A
polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proceedings of the
National Academy of Sciences of the United States of America 99(22):
14002-14407.
Radjasa, O.K., Martens,
T., Grossart, H.P., Brinkhoff,
T., Sabdono, A. & Simon,
M. 2007. Antagonistic activity of a marine bacterium Pesuedoalteromonas luteoviolacea TAB 4.2 associated
with coral Acroporasp. Journal of
Biological Sciences 7(2): 239-246.
Ramaprasad, E.V.V., Mahidhara, G., Sasikala, C. & Ramana, C.V. 2018. Rhodococcus electrophilic sp. nov., a marine electro active actinobacterium isolated from
coral reef. International Journal of Systematic and Evolutionary
Microbiology 68(8): 2644-2649.
Rani, N., Sharma, A. & Singh, R. 2013. Imidazoles as promising scaffolds for antibacterial
activity: A review. Mini-Rev. Med. Chem. 13(12): 1812-1835.
Rossi, M., Ciaramella, M., Cannio, R., Pisani, F.M., Moracci,
M. & Bartolucci, S. 2002. Extremophiles. Journal
of Bacteriology 185: 3683-3689.
Salazar-Marroquin, E.L., Galan-Wong, L.J.,
Moreno-Medina, V.R., Reyes-Lopez, M.A. & Pereyra-Alferez,
B. 2016. Bacteriocins synthesized by Bacillus thuringiensis:
Generalities and potential applications. Reviews in Medical Microbiology 27(3): 95-101.
Sanz-Sáez, I., Salazar, G.,
Sánchez, P., Lara, E., Royo-Llonch, M., Sà, E.L., Lucena, T., Pujalte, M.J., Vaqué, D., Duarte,
C.M., Gasol, J.M., Pedrós-Alió, C., Sánchez, O. & Acinas, S.G. 2020. Diversity and distribution of
marine heterotrophic bacteria from a large culture collection. BMC
Microbiology 20: 207.
Saurav, K., Costantino, V., Venturi, V. &
Steindler, L. 2017. Quorum sensing inhibitors from the sea discovered using
bacterial N-acylhomoserine lactone-based biosensors. Marine
Drugs 15(3): 53.
Srinivasan, R., Kannappan,
A., Shi, C. & Lin, X. 2021. Marine bacterial secondary metabolites: A
treasure house for structurally unique and effective antimicrobial compounds. Marine
Drugs 19: 530.
Stackebrandt, E., Koch, C., Gvozdiak, O. & Schumann, P. 1995. Taxonomic dissection
of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend.
International Journal of Systematic and Evolutionary Microbiology 45(4):
682-692.
Stein, T. 2005. Bacillus subtilis antibiotics:
Structures, syntheses and specific functions. Molecular Microbiology 56(4): 845-857.
Stincone, P. & Brandelli, A. 2020. Marine bacteria as source of
antimicrobial compounds. Critical Reviews in Biotechnology 40: 306-319.
Valliappan, K., Sun, W. & Li, Z. 2014. Marine actinobacteria associated
with marine organisms and their potentials in producing pharmaceutical natural
products. Applied Microbiology and Biotechnology 98: 7365-7377.
Vollaro, A., Esposito, A., Antonaki, E., Lula, V.D., D’Alonzo,
D., Guaragna, A. & De Gregorio, E. 2020. Steroid derivatives as potential antimicrobial
agents against Staphylococcus aureus planktonic cells. Microorganisms 8(4): 468.
Wade, W. 2002. Unculturable bacteria - The
uncharacterized organisms that cause oral infections. Journal of the Royal
Society of Medicine 95: 81-83.
Wang, W., Park, K., Lee, J., Oh, E., Park, C., Kang,
E., Lee, J. & Kang, H. 2020. A new thiopeptide antibiotic, micrococcin P3, from a marine-derived strain of the
bacterium Bacillus stratosphericus. Molecules 25(19): 4383.
Yan, J., Wu, Q., Helfrich, E.J.N., Chevrette,
M.G., Braun, D.R., Heyman, H., Ananiev, G.E., Rajski, S.R., Currie, C.R., Clardy, J. & Bugni, T.S. 2022. Bacillimidazoles A-F, imidazolium-containing compounds isolated from a marine Bacillus. Marine
Drugs 20(1): 43.
Zhang, L., An, R., Wang, J., Sun, N., Zhang, S., Hu,
J. & Kuai, J. 2005. Exploring novel bioactive compounds from marine
microbes. Current Opinion in Microbiology 8: 276-281.
Zhang, X., Ahmad, W., Zhu, X., Chen, J. & Austin,
B. 2021. Viable but nonculturable bacteria and their resuscitation:
Implications for cultivating uncultured marine microorganisms. Marine Life
Science and Technology 3: 189-203.
*Corresponding author; email:
char002@brin.go.id